High Redshift Galaxies in 3D-HST Exploring Cosmic Dawn

John Weaver w. Michael Maseda

LEAPS Symposium 11.08.16

"Because it is there."

- G. Mallory (1886 – 1924)

Motivation Searching for High Redshift

Photometric candidates are abundant

Rely on the $Ly\alpha$ line to confirm redshifts

Increasingly neutral IGM absorbs $Ly\alpha$

HST photometry over five famous fields

HST photometry over five famous fields

Provides deep multi-band imaging

02

Start with multi-band imaging

Start with multi-band imaging

Fit to a library of galaxy spectra

03

Start with multi-band imaging

Fit to a library of galaxy spectra

Study redshift distributions

Remarkably accurate!

Dissecting the Light The Purpose of 3D-HST

NIR spectroscopy survey of 100,000 galaxies z > 1

Covers 70% of the CANDELS fields

Low resolution multi-object grism spectrograph

Dissecting the Light The Purpose of 3D-HST

NIR spectroscopy survey of 100,000 galaxies z > 1

Covers 70% of the CANDELS fields

Low resolution multi-object grism spectrograph

Grism Spectroscopy Multiplexing is Powerful

Grism Spectroscopy Multiplexing is Powerful

Probabilistic treatment of line identifications

$$p(A > 0|\{S\}, \Delta x) = \int_{>0}^{1} p_{posterior}(A|\{S\}, \Delta x) dA.$$

Maseda+16

Probabilistic treatment of line identifications

$$p(A > 0|\{S\}, \Delta x) = \int_{>0}^{1} p_{posterior}(A|\{S\}, \Delta x) dA.$$

Maseda+16

Utilizes prior knowledge from photometry

Probabilistic treatment of line identifications

$$p(A > 0|\{S\}, \Delta x) = \int_{>0}^{1} p_{posterior}(A|\{S\}, \Delta x) dA.$$

Maseda+16

Utilizes prior knowledge from photometry

Probabilistic treatment of line identifications

$$p(A > 0|\{S\}, \Delta x) = \int_{>0}^{1} p_{posterior}(A|\{S\}, \Delta x) dA.$$

Maseda+16

Utilizes prior knowledge from photometry

Quality Control COSMOS - 13141

Quality Control GOODSS - 26864

Quality Control UDS - 18763

Results Preliminary Object Catalogue

ID	Field	$\mathbf{R}\mathbf{A}$	Dec	z_{phot}	z_{line}
10381	AEGIS	215.08174133	52.95420837	6.92	6.93
13718	AEGIS	214.91113281	52.84708023	6.17	6.15
17931	AEGIS	214.7802124	52.77084351	1.79	8.17
20187	AEGIS	214.94522095	52.89733887	1.55	7.3
31282	AEGIS	214.68658447	52.75674438	2.4	7.05
34307	AEGIS	214.74450684	52.80994034	1.76	6.97
5956	COSMOS	150.08717346	2.23826909	0.91	5.29
7696	COSMOS	150.12722778	2.25735831	6.46	6.24
9338	COSMOS	150.0864563	2.27407551	4.59	4.51
10912	COSMOS	150.11653137	2.29063773	5.43	5.54
13141	COSMOS	150.10752869	2.31298637	4.88	4.77
13254	COSMOS	150.17713928	2.3141129	4.65	4.62
25077	COSMOS	150.11746216	2.43756771	5.62	5.75
4742	GOODSS	53.128404	-27.890518	6.24	6.53
0.40.40	DD G O O D G G	F0 104500	05 500501	0.01	C OF

Summary High Redshift Galaxies in 3D-HST

Supplementary Bayesian Methods

Prepare spectrum ${f S}$ by subtracting continuum and contamination

Use science image I as model for spatial extent of emission line A at Δx

$$\ln \mathscr{L}(\{S\}|A, \Delta x) = -\frac{1}{2} \sum_{x=0}^{x_{max}} \sum_{y=0}^{y_{max}} \frac{(S_m(x, y|A) - S(x + \Delta x, y))^2}{\sigma_S^2(x + \Delta x, y)},$$

Posterior distribution function dictated by Bayes' Theorem, given prior

$$p_{posterior}(A|\{S\}, \Delta x) \propto \mathscr{L}(\{S\}|A, \Delta x) \times p_{prior}(A|\Delta x).$$

Calculate the probability of A>0 at any given position

$$p(A > 0|\{S\}, \Delta x) = \int_{>0}^{1} p_{posterior}(A|\{S\}, \Delta x) dA.$$

Supplementary Photometric Priors

Independent information can be incorporated in a prior distribution

Choose F160W band for photometric prior + unbiased flat prior

Incorporate prior information from both ${\bf A}$ and $\Delta {\bf x}$

$$p_{prior}(A|\Delta x) = (1 - p_{prior}(\Delta x)) \times \delta(A = 0) + p_{prior}(\Delta x) \times p_{prior}(A),$$

Folds into SED fitting directly, thus effects P(z)

Convolve P(z) with rest frame wavelengths of expected emission lines

Supplementary 3D-HST Survey Details

Treasury program with 248 orbits during Cycles 18/19

Spectroscopy with WFC3/G141 slitless grism

Acquisition frames taken in WFC3/140W and ACS/F814W filters

Field	RA	Dec	G141 Area	G800L Area
	(h m s)	(d m s)	(arcmin ²)	(arcmin ²)
AEGIS	14:18:36.00	+52:39:00.0	121.9	102.5
COSMOS	10:00:31.00	+02:24:00.0	122.2	112.7
GOODS-N	12:35:54.98	+62:11:51.3	116.0	84.1
GOODS-S	03:32:30.00	-27:47:19.0	147.3	134.6
UDS	02:17:49.00	-05:12:02.0	118.7	107.4
Total			626.1	541.3

GOODS-N appended in post from B. Weiner

Photometric companion dataset described in Skelton+14

Supplementary Emission Lines

Line search technique is tuned to high redshift emission lines

Line Name	Rest Wavelength [A]
CIII	1909.0
0111	1665.9
Hell	1640.4
Ly α	1216.0
CIV	1549.5
MgII	2800.0

Supplementary Direct Image and Grism Coverage

Direct Image chosen in F140W to match G141 spectral coverage

